Math, asked by nabamdol1, 7 months ago

find a and b if 3+√6/√3+√2= a+b√3

Answers

Answered by kumarshubhankar250
4

this is the correct answer please mark me as a brainlist and follow me

Attachments:
Answered by sonisiddharth751
7

Given :-

  \sf \: if \:  \dfrac{3 +  \sqrt{6} }{ \sqrt{3}  +  \sqrt{2} }  = a + b \sqrt{3}

To find :-

the value of a and b

Solution :-

 \bf \:  \dfrac{3 +  \sqrt{6} }{ \sqrt{3}  +  \sqrt{2} }

rationalize the denominator we get ---

\implies \sf \:  \dfrac{3  + \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} }  \times  \dfrac{ \sqrt{3}  -  \sqrt{2} }{\sqrt{3}  -  \sqrt{2} }  \\  \\ \implies \sf \:  \dfrac{3 \sqrt{3}  - 3 \sqrt{2} +  \sqrt{18} -  \sqrt{12}   }{ { \sqrt{(3)} }^{2} -  { \sqrt{(2)} }^{2}  }  \\  \\ \implies \sf \:  \dfrac{3 \sqrt{3} - 3 \sqrt{2}   + 3 \sqrt{2}  - 2 \sqrt{3} }{3 - 2}  \\  \\ \implies \sf \:  \dfrac{3 \sqrt{3} \:  \:  \:  \cancel{ - 3 \sqrt{2}  } \:  \:  \:  \cancel{ + 3 \sqrt{2}}  - 2 \sqrt{3}}{1}  \\  \\ \implies \sf \:  3 \sqrt{3}   + 0- 2 \sqrt{3}  \\  \\\implies \sf \:0 + 3 \sqrt{3}  - 2 \sqrt{3}   \\  \\ \implies \sf \:0 +   1\sqrt{3}

and this is equal to a + b√3

0 + 1√3 = a + b√3

therefore,

the value of a = 0

the value of b = 1

basic instructions :-

 \blue \bigstar \tt \: the \: value \: of \:  \sqrt{18}  = 3 \sqrt{2}  \\  \blue \bigstar \tt \: the \: value \: of \:  \sqrt{12}  = 2 \sqrt{3}

here, in the Solution one identity is used .(a + b) (a - b) = (a)² - (b)²

.

Similar questions