Math, asked by umair09877, 1 year ago

find GP whose 5 term is 80 and 8 term is 640

Answers

Answered by PegasusPurpose
1

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{{\underline{\underline{\huge\mathcal{...Answer...}}}}}}

\large\mathcal\red{solution}

Now ,let the 1st term is= a and common ratio is =r

now condition 1

a(5) =  ar {}^{5 - 1}  = ar {}^{4} = 80  \\ and</u></strong><strong><u> </u></strong><strong><u>\</u></strong><strong><u>:</u></strong></p><p><strong><u>condit</u></strong><strong><u>ion</u></strong><strong><u> </u></strong><strong><u>2</u></strong><strong><u> \\ a(8) = ar {}^{8 - 1}  = ar {}^{7}  = 640 \\ now \\  \frac{a(5)}{a(8)}  =  \frac{80}{640}  =  \frac{ar {}^{4} }{ar {}^{7} }  =  \frac{1}{r {}^{3} }  \\  =  &gt; r {}^{3}  =  \frac{640}{80}  \\  =  &gt; r = 2 \\ now \:  \\ a =  \frac{80}{2 {}^{4} }  = 5 \\   \\ therefore \: the \: series \: is \: \\

5,10,20,40,80,160,320,640,1280,...............

Similar questions