Math, asked by mastergreat232janvi, 6 months ago

find the amount of Rs 8000 for 3years commounded annually at 5%per annum

Answers

Answered by sethrollins13
38

Given :

  • Sum of Rs.8000 is for 3 years compounded annually at 5% per annum .

To Find :

  • Amount at the end of 3 years .

Solution :

\longmapsto\tt{Principal\:(P)=Rs.8000}

\longmapsto\tt{Time(t)=3\:yrs.}

\longmapsto\tt{Rate(r)=5\%}

Using Formula :

\longmapsto\tt\boxed{Amount=P\bigg(1+\dfrac{r}{100}\bigg)^{t}}

Putting Values :

\longmapsto\tt{8000\bigg(1+\dfrac{5}{100}\bigg)^{3}}

\longmapsto\tt{8000\bigg(\dfrac{100+5}{100}\bigg)^{3}}

\longmapsto\tt{8000\bigg(\dfrac{105}{100}\bigg)^{3}}

\longmapsto\tt{8{\not{0}}{\not{0}}{\not{0}}\times\dfrac{1157625}{1000{\not{0}}{\not{0}}{\not{0}}}}

\longmapsto\tt{\dfrac{8\times{1157625}}{1000}}

\longmapsto\tt{\dfrac{9261000}{1000}}

\longmapsto\tt\bf{Rs.9261}

So , The Amount at the end of 3 years will be Rs.9261 .

_______________________

  • Amount=P\bigg(1+\dfrac{r}{100}\bigg)^{t}

  • Compund Interest = Amount - Principal
  • Simple Interest = P × T × R /100

Here :

  • P = Principal
  • T = Time
  • R = Rate of Interest

_______________________

Answered by Anonymous
37

Step-by-step explanation:

Given :

  • Principle = 8000 Rs

  • Time = 3 years

  • Rate = 5 %

To Find :

  • Find the amount

Solution :

Concept :

  • Use this simple interest calculator to find A, the Final Investment Value, using the simple interest formula: A = P(1 + rt) where P is the Principal amount of money to be invested at an Interest Rate R% per period for t Number of Time Periods. Where r is in decimal form; r=R/100; r and t are in the same units of time.

We have :

: \implies \:  \:  \:  \boxed{ \sf \: A = P \bigg \{1 +  \frac{R}{100} \bigg \} ^{T}  } \\

Substitute all Values :

: \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A= 8000 \bigg \{1 +  \frac{5}{100} \bigg \} ^{3}   \\  \\  \\  : \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A= 8000 \bigg \{   \cancel{\frac{105}{100}} \bigg \} ^{3} \\  \\  \\ : \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A= 8000 \bigg \{  \frac{21}{20} \bigg \} ^{3} \\  \\  \\ : \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A= 8000 \times  \frac{21}{20}  \times  \frac{21}{20}  \times  \frac{21}{20}  \\  \\  \\ : \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A=\cancel{8000} \times  \frac{21 \times 21 \times 21}{\cancel{8000}}  \\  \\  \\

: \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A=21 \times 21 \times 21 \\  \\  \\ : \implies \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A = 9261

  •  \therefore \:  \:  \underline{ \sf \: the \: amount \: is \: 9261} \:
Similar questions