Math, asked by comedyfun301, 10 months ago

find the harmonic mean of 1; 1/3 ; 1/5; ......1/2n-1


please Yaar correct answer do
urgent hai please yaar​

Answers

Answered by BrainlyPopularman
69

GIVEN :

A Harmonic series => 1 , ⅓ , ⅕ , ........ , 1/(2n - 1)

TO FIND :

Harmonic mean = ?

SOLUTION :

• We know that If two term a , b in H.P. (Harmonic progression) , Then Harmonic mean –

 \\ \:  \:  \longrightarrow \:  \: { \boxed { \bold{H.M. =  \dfrac{2}{ \dfrac{1}{a}  +  \dfrac{1}{b} }  =  \dfrac{2ab}{a + b} }}} \\

• Similarly H.M. for n terms –

 \\ \:  \:  \longrightarrow \:  \: { \boxed { \bold{H.M. =  \dfrac{n}{ \dfrac{1}{ x_{1} }  +  \dfrac{1}{ x_{2}}  + ....... +\dfrac{1}{ x_{n}} } }}} \\

• Now put the values –

 \\ \:  \:  \implies \:  \:  { \bold{H.M. =  \dfrac{n}{ \dfrac{1}{ 1 }  +  \dfrac{1}{  (\frac{1}{3} )}  + \dfrac{1}{  (\frac{1}{5} )}  + ....... +\dfrac{1}{ 2n - 1} } }} \\

 \\ \:  \:  \implies \:  \:  { \bold{H.M. =  \dfrac{n}{1  +3+5+ ....... +2n - 1} \:   \:  \: \:  -  -  - eq.(1)  }} \\

• Let's solve the series which is in Denominator –

 \\ \:  \:  \implies \:  \:  { \bold{1  +3+5+ ....... +2n - 1}} \\

• This series is an A.P. And we know that sum of A.P. is –

 \\ \:  \:  \implies \:  \:  { \bold{ s_{n} =  \frac{n_1}{2}(a + l)}} \\

• Here –

 \\ \:  \: \:  \:  \:  { \huge{.}}\:  \:  { \bold{ a = first \:  \: term}} \\

 \\ \:  \: \:  \:  \:  { \huge{.}}\:  \:  { \bold{ l = last \:  \: term}} \\

 \\ \:  \: \:  \:  \:  { \huge{.}}\:  \:  { \bold{ n_1= total \:  \: number \:  \: term}} \\

• First Let's find 'n' –

 \\ \:  \:  \implies \:  \:  { \bold{ l =  a + (n_1 - 1)d}} \\

 \\ \:  \:  \implies \:  \:  { \bold{ 2n - 1 =  1 + (n_1 - 1)2}} \\

 \\ \:  \:  \implies \:  \:  { \bold{ 2n - 1 =  2n_1 - 1}} \\

 \\ \:  \:  \implies \:  \:  { \bold{ n_1  = n}} \\

• So that sum –

 \\ \:  \:  \implies \:  \:  { \bold{ s_{n} =  \frac{n}{2}(1 + 2n - 1)}} \\

 \\ \:  \:  \implies \:  \:  { \bold{ s_{n} =  \frac{n}{2}( 2n )}} \\

 \\ \:  \:  \implies \:  \:  { \bold{ s_{n} =   {n}^{2} }} \\

• Put sum in eq.(1) –

 \\ \:  \:  \implies \:  \:  { \bold{H.M. =  \dfrac{n}{( {n}^{2} )}   }} \\

 \\ \:  \:  \implies \:  \: \large { \boxed{ { \bold{H.M. =  \dfrac{1}{n}   }}}} \\

Similar questions