Music, asked by ramkiranyadav, 1 year ago

find the square root of 9 + 2 root 20​

Answers

Answered by swethassynergy
0

The value of  square root of {9+2\sqrt{20} } is \sqrt{5} +\sqrt{4}.

Explanation:

Given:

\sqrt{9+2\sqrt{20} }

To Find:

The value of  square root of {9+2\sqrt{20} } .

Solution:

As given,\sqrt{9+2\sqrt{20} }.

(\sqrt{5} +\sqrt{4} )^{2} =(\sqrt{5} )^{2} +(\sqrt{4} )^{2} +2\times\sqrt{5} \sqrt{4}

                  =5+4+2\sqrt{5\times4}

                  =9+2\sqrt{20}

It means we can write 9+2\sqrt{20}=(\sqrt{5} +\sqrt{4} )^{2}

The value of \sqrt{9+2\sqrt{20} }

                 =\sqrt{(\sqrt{5} +\sqrt{4} )^{2} }

                 =\sqrt{5} +\sqrt{4}

Thus, the value of  square root of {9+2\sqrt{20} } is \sqrt{5} +\sqrt{4}.

#SPJ2

Answered by gayatrikumari99sl
0

Answer:

The square root of 9 + 2\sqrt{20} is (\sqrt{5}+\sqrt{4})^2

Explanation:

Given that, 9+ 2\sqrt{20}

According to the question we need to find out the square root of 9 + 2\sqrt{20}.

9 + 2\sqrt{20} can be written as

9 + 2\sqrt{20} = (\sqrt{5} )^2 + (\sqrt{4} )^2 + 2.(\sqrt{5} )(\sqrt{4} )

9 + 2\sqrt{20} = (\sqrt{5} + \sqrt{4})^2

Verify:

Where (\sqrt{5}+ \sqrt{4}  )^2 = (\sqrt{5} )^2 +(\sqrt{4} )^2 + 2.(\sqrt{5} ).\sqrt{4}

(\sqrt{5}+ \sqrt{4}  )^2 = 5 + 4 + 2\sqrt{20}

(\sqrt{5}+ \sqrt{4}  )^2 = 9 + 2\sqrt{20}

Now, according to the question square root of 9 + 2root 20.

\sqrt{9 +2\sqrt{20} }  = \sqrt{(\sqrt{5} + \sqrt{4} )^2}

\sqrt{9 +2\sqrt{20} }  = (\sqrt{5} + \sqrt{4} )^2

Final answer:

Hence, (\sqrt{5}+\sqrt{4}  )^2 this is the required answer.

#SPJ2

Similar questions