Math, asked by katechinu9, 9 months ago

find the sum and the product of slope of line represented by x²+4xy-7y²=0​

Answers

Answered by MaheswariS
45

\textbf{Given:}

\textsf{Pair of straight lines is}

\mathsf{x^2+4xy-7y^2=0}

\textbf{To find:}

\textsf{Sum and product of slopes of the pair of straight lines}

\textbf{Solution:}

\underline{\textsf{Concept:}}

\mathsf{Sum\;and\;Product\;of\;slopes\;of\;ax^2+2hxy+by^2=0\;is}

\mathsf{m_1+m_2=\dfrac{-2h}{b}}

\mathsf{m_1m_2=\dfrac{a}{b}}

\mathsf{Consider,}

\mathsf{x^2+4xy-7y^2=0}

\mathsf{Here,\;a=1,\;h=2,\;b=-7}

\mathsf{Sum\;of\;the\;slopes}

\mathsf{=\dfrac{-2h}{b}}

\mathsf{=\dfrac{-2(2)}{-7}}

\mathsf{=\dfrac{4}{7}}

\mathsf{Product\;of\;the\;slopes}

\mathsf{=\dfrac{a}{b}}

\mathsf{=\dfrac{1}{-7}}

\mathsf{=\dfrac{-1}{7}}

Similar questions