Math, asked by chinmay257, 11 months ago

find the sum of AP which contains 25 terms and whose term is 20​

Answers

Answered by Anonymous
3

\huge{\mathcal{\fcolorbox{Black}{grey}{Hola\:Mate!}}}

{\underline{\overline{\bf{\mid{check\: the\: attachment}\mid}}}}

Attachments:
Answered by RvChaudharY50
135

{\large\bf{\mid{\overline{\underline{Correct\:Question:-}}}\mid}}

 \textbf{Find the sum of 25 terms of an A.P} \\     \textbf{whose middle term is 20.}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • Middle term = ( First term + Last term )/2
  • Sum of AP = n/2(First term + Last term)

__________________________

\underline {\underline{\LARGE{{\bf{\green{S}}}{\mathfrak{o}}{\mathfrak{\orange{l}}}{\mathfrak{\red{u}}}{\mathfrak{\pink{t}}}{\mathfrak{\purple{i}}}{\mathfrak{\blue{o}}}{\mathfrak{\red{n}}}}}} : \:

Let,

→ First Term of AP = a1

→ Last term = l (small L)

→ Number of terms = n

→ Middle term = m

so, we have

→ m = 20

→ n = 25 ...

From above told Middle term formula we get,

20 =  \frac{a_1 + l}{2}  \\  \\ \red\longrightarrow \: (a_1 + l) = 40

_____________________________

Now putting this value in sum of n terms of AP with first term and last term , we get,

S_n = \:   \frac{n}{2} (a_1 + l) \\  \\  \green{putting \: values} \\  \\ \red\longrightarrow \: S_n \:  =  \frac{25}{2}  \times (40) \\  \\ \red\longrightarrow \: S_n \:  = \: 25 \times 20 \\  \\ \red\longrightarrow \: S_n \:  = \: \bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{\:500}}}}}}}}}} \:

Hence, sum of 25 terms of AP is 500....

_________________________________

\large\underline\textbf{Hope it Helps You.}

#BAL

Similar questions