Math, asked by VedVarshithReddy, 1 year ago

If cot theta = b/a, then the value of
cos theta + sin theta/cos theta - sin theta


Answers

Answered by Hiteshbehera74
6

It's equal to  \frac{b +  \sqrt{ {a}^{2} -  {b}^{2}  } }{b -  { \sqrt{ {a}^{2}  -  {b}^{2} } }^{2} }

 {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\  {sin}^{2}  \alpha  = 1 -  {cos}^{2}  \alpha  \\  {sin}^{2}  \alpha  = 1 -  \frac{ {b}^{2} }{ {a}^{2} }  \\ sin \alpha  =  \frac{ \sqrt{ {a}^{2} -  {b}^{2}  } }{a}

Thus,

 \frac{cos \alpha  + sin \alpha }{cos \alpha  - sin \alpha }  \\  =  \frac{ \frac{b}{a}  +  \frac{ \sqrt{ {a}^{2}  -  {b}^{2} } }{a} }{ \frac{b}{a} -  \frac{  \sqrt{ {a}^{2} -  {b}^{2}  }  }{a}  }  \\  =  \frac{b +  \sqrt{ {a}^{2} -  {b}^{2}  } }{b -  \sqrt{ {a}^{2}  -  {b}^{2} } }

#answerwithquality

#BAL

Similar questions