Math, asked by neelimajonnadula311, 9 months ago

find the value of √1+sin theta /1-sin theta​

Answers

Answered by MOSFET01
17

Solution :

\sqrt{\dfrac{1\: + \: sin\theta}{1\: - \: sin\theta}}

\sqrt{\dfrac{1\:+\: sin\theta}{1\: -\: sin\theta}\times\dfrac{1\: +\: sin\theta}{1\: + \: sin\theta}}

\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{1^{2}\: - \: sin^{2}\theta}}

\sqrt{\dfrac{(1\: + \: sin\theta)^{2}}{Cos^2\theta}}

\dfrac{1\: + \: sin\theta}{Cos\theta}

\dfrac{1}{Cos\theta}\: + \: \dfrac{sin\theta}{cos\theta}

sec\: \theta \: + \: tan\: \theta

Answered by ITzBrainlyGuy
3

QUESTION

value of

 \sqrt{ \frac{ {1 +  \sin( \theta) } }{ 1  -  \sin( \theta) } }

FORMULAS USED:

→» (a + b) (a - b) = a² - b²

→» (a + b)(a + b) = (a + b)²

→» sin²θ + cos²θ = 1

cos²θ = 1 - sin²θ

 \frac{ \sin( \theta) }{ \cos( \theta) }  =  \tan( \theta)

 \frac{1}{ \cos( \theta) }  =  \sec( \theta)

ANSWER:

multiply and divide with

={1 +  \sin( \theta) }

 \sqrt{ \frac{1 +  \sin( \theta) }{1 -  \sin( \theta )} \times  \frac{1 +  \sin( \theta) }{1 +  \sin( \theta) }  }

 \sqrt{ \frac{( {1 +  \sin( \theta) )}^{2} }{ {1}^{2}  -  { \sin( \theta) }^{2} } }

By using radical rules

= \frac{ \sqrt{ {(1  +  \sin( \theta) )}^{2} } }{ \sqrt{ {1}^{2} -   { \sin( \theta) }^{2}   } }

= \frac{1 +  \sin( \theta) }{ \sqrt{   { \cos( \theta) }^{2} } }

=  \frac{1 +  \sin( \theta) }{ \cos( \theta) }

 =  \frac{1}{ \cos( \theta) }  + \frac{ \sin( \theta) }{ \cos( \theta) }

= \sec( \theta)  +  \tan( \theta)

CONCEPTS USED

→» trigonometric identities

→» trigonometric ratios

→» rationalization

Similar questions