Math, asked by mayuri979, 1 year ago

find the value of sin theta /sectheta +tantheta- +cos theta /cosectheta +cot theta -1​

Answers

Answered by abhi178
6

your question is .....

sinθ/(secθ + tanθ - 1) + cosθ/(cosecθ + cotθ -1) = ?

= sinθ/(1/cosθ + sinθ/cosθ - 1) + cosθ/(1/sinθ + cosθ/sinθ - 1)

= sinθ.cosθ/(1 + sinθ - cosθ) + cosθ.sinθ/(1 + cosθ - sinθ)

= sinθ.cosθ [ 1/(1 + sinθ - cosθ) + 1/(1 + cosθ - sinθ) ]

[ use formula, 2sinx.cosx = sin2x ]

= sinθ.cosθ [ (1 + cosθ - sinθ + 1 + cosθ - sinθ)/(1 + sinθ - cosθ)(1 + cosθ - sinθ)]

= 2sinθ.cosθ [ 1/{1 + (sinθ - cosθ)}{1 -(sinθ - cosθ)}]

= sin2θ [ 1/{1² - (sin²θ + cos²θ - 2sinθ.cosθ)} ]

[ use identity , sin²x + cos²x = 1 ]

= sin2θ [ 1/{1 - {1 - sin2θ}]

= sin2θ/sin2θ

= 1

hence, answer is 1.

Similar questions