Math, asked by HishamFayz05, 4 months ago

For what values of k, the zero of the polynomial 9x2+6kx+4 is 10?​

Answers

Answered by jayapreethi35
0

Answer:

Brother or sister I think you forgot and written x

Attachments:
Answered by Anonymous
24

Given

  • p(x) = 9x² + 6kx + 4

To find

  • Value of k for which the zero of the given polynomial will be 10.

Solution

  • We need to find that value of k, for which the zero of given polynomial will be 10.

\: \: \: \: \sf\underline{Therefore\: we\: will\: put\: x = 10} \\ \: \: \: \: \: \: \sf\underline{in\: the\: given\: polynomial}

\tt:\implies\: \: \: \: \: \: \: \: {p(x) = 9x^2 + 6kx + 4}

\tt:\implies\: \: \: \: \: \: \: \: {p(10) = 9(10)^2 + 6k(10) + 4}

\tt:\implies\: \: \: \: \: \: \: \: {p(10) = 9(100) + 60k + 4}

\tt:\implies\: \: \: \: \: \: \: \: {p(10) = 900 + 60k + 4}

\bf:\implies\: \: \: \: \: \: \: \: {p(10) = 904 + 60k}

If 10 is the zero of the given polynomial, then put

\large{\boxed{\boxed{\sf{p(10) = 0}}}}

\tt\longmapsto{904 + 60k = 0}

\tt\longmapsto{60k = -904}

\tt\longmapsto{k = \dfrac{-904}{60}}

\bf\longmapsto{k = \dfrac{226}{15}\:  or\: 15.06}

Hence,

  • The Value of k is 226/15 or 15.06.

━━━━━━━━━━━━━━━━━━━━━━

Similar questions