Given :
To Find :
___________________________
Solve this..
___________________________
Answers
||✪✪ QUESTION ✪✪||
if x⁴ + x²y² + y⁴ = 189 and x^2 + xy + y^2 = 21, Find (1/x² + 1/y²) ?
✫✫ Solution (1) ✫✫ :-
Let,,
➪ x⁴ + x²y² + y⁴ = 189 ----- Equation (❶)
➪x² + xy + y² = 21 ------ Equation (❷)
Adding and subtracting x²y² in Equation ❶ LHS we get,
➺ x⁴ + x²y² + y⁴ + x²y² - x²y² = 189
➺ (x⁴ + 2x²y² + y⁴) - x²y² = 189
Now, using a² + b² + 2ab = (a+b)² , we get,
➺ (x² + y²)² - (xy)² = 189
Now, using (a² - b²) = (a+b)(a-b),
➺ (x² + y² + xy)(x² + y² - xy) = 189
Putting value of Equation ❷ here , we get,
➺ 21 * (x²+y² - xy) = 189
Dividing both sides by 21,
➺ (x² + y² - xy) = 9 ----- Equation ❸
___________________________
Now, Adding Equation ❷ & ❸ we get,
➻ (x² + y² + xy) + (x² + y² - xy) = 21 + 9
➻ 2x² + 2y² = 30
➻ 2(x² + y²) = 30
➻ (x² + y²) = 15 ------- Equation ❹
___________________________
Now, Subtracting Equation ❹ From Equation ❷ we get,
➼ (x² + y² + xy) - (x²+y²) = 21 - 15
➼ xy = 6 ------ Equation ❺
___________________________
Now, we have To Find :-
☛ (1/x²) + (1/y²)
☛ [ (y² + x²) / x²y² ]
☛ [ (x² + y²) / (xy)² ]
Putting value of Equation ❹ & ❺ Now, we get,
☛ [ 15/(6)² ]
☛ (15/36)
☛ (5/12) (Ans.)
꧁_____________________꧂
☙☘ Solution (2) ☘☙ :-
Let ,
1/x² + 1/y² = M
⟿ x² +y² = M(xy)² = (21- xy)
Also ,
⟼x⁴ + y⁴ + 2(xy)² = M².(xy)⁴
⟼ 189 + (xy)² = 441 + (xy)² - 42xy
⟼ xy = 6
⟼ M = (21-6)/36 = 5/12 (Ans.)
꧁______________________꧂
❏ Question:-
To Find :
❏ Solution:-
........(i)
And ,
.......(ii)
Hence,
( putting the value of xy=6)
(Ans).