Math, asked by Anonymous, 1 year ago

Hey there! ❤️

Pls answer the above question!

Kindly don't spam plzz! ​

Attachments:

Answers

Answered by AbhijithPrakash
15

Answer:

$\mathrm{Domain\:of\:}\:\dfrac{\log _{10}\left(2x-3\right)}{\sqrt{x-1}}+\sqrt{5-2x}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:\dfrac{3}{2}<x\le \dfrac{5}{2}\:\\ \:\mathrm{Interval\:Notation:}&\:\left(\dfrac{3}{2},\:\dfrac{5}{2}\right]\end{bmatrix}$

Step-by-step explanation:

\green{\mathrm{Domain\:De finition}}

  • The domain of a function is the set of input or argument values for which the function is real and defined

\blue{\mathrm{Find\:non-negative\:values\:for\:radicals}:}

\gray{\sqrt{f\left(x\right)}\quad \Rightarrow \quad \:f\left(x\right)\ge 0\:}

\black{\mathrm{Solve\:}\:x-1\ge \:0:\quad x\ge \:1}

\displaystyle\black{\mathrm{Solve\:}\:5-2x\ge \:0:\quad x\le \frac{5}{2}}

\gray{\mathrm{Combine\:the\:intervals}}

\displaystyle1\le \:x\le \frac{5}{2}

\blue{\mathrm{Find\:positive\:values\:for\:logs}:}

\gray{\log _af\left(x\right)\quad \Rightarrow \quad \:f\left(x\right)>0}

\displaystyle\black{\mathrm{Solve\:}\:2x-3>0:\quad x>\frac{3}{2}}

\blue{\mathrm{Find\:unde fined\:\left(singularity\right)\:points}:}

\displaystyle\gray{\mathrm{Take\:the\:denominator\left(s\right)\:of\:}\frac{\log _{10}\left(2x-3\right)}{\sqrt{x-1}}+\sqrt{5-2x}\mathrm{\:and\:compare\:to\:zero}}

\black{\mathrm{Solve\:}\:\sqrt{x-1}=0:\quad x=1}

\gray{\mathrm{The\:following\:points\:are\:unde fined}}

x=1

\gray{\mathrm{Combine\:real\:regions\:and\:unde fined\:points\:for\:final\:function\:domain}}

\displaystyle\frac{3}{2}<x\le \frac{5}{2}

Attachments:
Answered by shadowsabers03
10

We're given the function,

f(x)=\dfrac{\log(2x-3)}{\sqrt{x-1}}+\sqrt{5-2x}

First consider the denominator of the fraction,

\sqrt{x-1}

Since it's a denominator, it can't be 0.

\sqrt{x-1}\neq 0\ \implies\ x-1\neq 0

We know the square of a real number is always non-negative. But in this case,

x-1>0\ \implies\ x>1

But consider the numerator of the fraction,

\log(2x-3)

We know the number of which logarithm is taken and the base number of the logarithm should be positive.

\log_b(a)\in\mathbb{R}\ \iff\ a,\ b>0

Here base is 10, so it is not considered. So,

2x-3>0\ \implies\ x>\dfrac{3}{2}>1

So we ignore x>1.

Now, consider  \sqrt{5-2x}.

As we said earlier, the square of this thing is non-negative.

5-2x\geq 0\ \implies\ 2x-5\leq 0\ \implies\ x\leq \dfrac{5}{2}

So, finally we get,

\dfrac{3}{2}<x\leq\dfrac{5}{2}\ \implies\ \boxed{x\in\left(\dfrac{3}{2},\ \dfrac{5}{2}\right]}

Hence option (d) is the answer.

Similar questions