I am not able to proceed after this step
please help!
Attachments:
Answers
Answered by
3
Well after
a(m - n) = d(n^2 -n - m^2 + m)
a(m - n) - d(n^2 - m^2 - n + m) = 0
Take - common
a(m - n) + d(m^2 - n^2 -m + n) = 0
a (m - n) + d { (m+n)(m - n)- (m - n)} = 0
a (m - n) + d(m - n){( m + n) - 1} = 0
Now take ( m - n ) common from whole
( m - n) { a + d( m + n ) - 1} = 0
a + ( m + n)d - 1 = 0 / ( m - n )
a + ( m + n)d - 1 = 0
Hence. A(m + n) = 0 is proved
Thanks
a(m - n) = d(n^2 -n - m^2 + m)
a(m - n) - d(n^2 - m^2 - n + m) = 0
Take - common
a(m - n) + d(m^2 - n^2 -m + n) = 0
a (m - n) + d { (m+n)(m - n)- (m - n)} = 0
a (m - n) + d(m - n){( m + n) - 1} = 0
Now take ( m - n ) common from whole
( m - n) { a + d( m + n ) - 1} = 0
a + ( m + n)d - 1 = 0 / ( m - n )
a + ( m + n)d - 1 = 0
Hence. A(m + n) = 0 is proved
Thanks
Similar questions