Math, asked by shivendrachauhan, 1 year ago

If 2x=3y=12z,then show that 1/z=1/y+2/x

Answers

Answered by mysticd
241

Solution:

Given

2^{x}= 3^{y}= (12)^{z}

Let \: 2^{x}= 3^{y}= (12)^{z}=k

i) 2^{x}=k \implies 2=k^{\frac{1}{x}}--(1)

ii)3^{y}=k \implies 3=k^{\frac{1}{y}}---(2)

iii)(12)^{z}=k \implies 12=k^{\frac{1}{z}}--(3)

Now ,

 \implies12=k^{\frac{1}{z}}

\implies 2^{2}\times 3=k^{\frac{1}{z}}

\implies k^{\frac{2}{x}}\times k^{\frac{1}{y}}=k^{\frac{1}{z}}

\implies k^{\frac{2}{x}+\frac{1}{y}}=k^{\frac{1}{z}}

\boxed { a^{m} × a^{n} = a^{m+n}}

\implies\frac{2}{x}+\frac{1}{y}=\frac{1}{z}

 \boxed {If \: a^{m} = a^{n} \implies m = n}

Hence , proved

••••

Answered by phillipinestest
40

When  \bold{2^{x}=3^{y}=12^{z}=k} ,   \bold{\frac{1}{y}+\frac{2}{x}=\frac{1}{z}} is proved

Solution:

Let us consider 2^{x}=3^{y}=12^{z}=k

Take logarithm on both sides.

x log 2 = log k  ; y log 3 = log k ; z log 12 = log k

x=\frac{\log k}{\log 2} ; y=\frac{\log k}{\log 3} ; z=\frac{\log k}{\log 12}

\frac{1}{y}+\frac{2}{x}=\frac{\log 3}{\log k}+\frac{2 \log 2}{\log k}=\frac{(\log 3+2 \log 2)}{\log k}

{ =\frac { \log 3+\log 2\times 2 }{ \log k } ({ since\ }a\ log\ m=ma) }

{ =\frac { (\log 3+\log 4) }{ \log k }}

{ =\frac { \log (3\times 4) }{ \log k } ({ since\ }\log a+\log b=\log ab) }

=\frac{\log 12}{\log k}

Therefore, \bold{\frac{1}{y}+\frac{2}{x}=\frac{1}{z}}  is proved.

Similar questions