If =√3-1 / √3+1 = x+y√3, find the values of x and y.
Answers
Answer:
(√3 - 1)/(√3 + 1) × (√3 - 1)/(√3 - 1)
=> (√3 - 1)^2/(3 - 1)
=> (3 + 1 - 2√3)/2
=> (4 - 2√3)/2
=> 2(2 - √3)/2
=> 2 - √3
2 - √3 = x + y√3
=> x = 2
=> y = -1
______________
Given : √3 -1 / √3 + 1 = x + y√3.
To find : value of x and y.
We have , √3 -1 / √3 + 1
On Rationalising the denominator :
= (√3 -1) (√3 - 1)
/ (√3 + 1)(√3 - 1)
= (√3 - 1)²/(√3² - 1²)
By Using Identity : (a - b)² = a² + b² - 2ab & (a + b)(a – b) = a² - b²
= [√3² + 1² - 2 × √3 × 1] /( 3 - 1)
= [3 + 1 - 2√3]/2
= [4 - 2√3]/2
= 4/2 - 2√3/2
√3 -1 / √3 + 1 = 2 - √3
∴ √3 -1 / √3 + 1 = x + y√3
= 2 - √3 = x + y√3
On equating rational and irrational parts :
x = 2 , y = - 1
Hence the value of x is 2 and y is - 1.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
If = 5 - √3 / 2 + √3 = x + y √3 then
A. x = 13, y = -7
B. x = -13, y = 7
C. x = -13, y = -7
D. x = 13, y = 7
https://brainly.in/question/15897588
If x = √3 - √2 /√3 + √2 and y = √3 + √2 / √3 - √2 , then x² + xy + y² = A. 101 B. 99 C. 98 D. 102
https://brainly.in/question/15897387