Math, asked by annajeferson10, 9 months ago

If 3/5 of a number exceeds its 2/7 by 44, find the number.Please answer as soon as possible.It is very urgent​

Answers

Answered by ZzyetozWolFF
5

Question

If 3/5 of a number exceeds its 2/7 by 44, find the number.

Answer:

140.

Step-by-step explanation:

Assuming the number to be x .

Now, It is said that 3/5 of a number exceeds its 2/7 by 44.

So , Required equation :

Assuming the number to be x.

According to the question we can presume that :

{ \boxed {\bold{ \frac{3}{5} x -  \frac{2}{7} x = 44 }}}

Solving the obtained equation :

  • Simplifying both the sides of equation :

 \mathsf{ \implies \:  \:  \dfrac{3}{5}x -  \dfrac{2}{7}  = 44 }

  • Combining like terms

 \mathsf{ \implies \:  \: \bigg(  \dfrac{3}{5}x -   \dfrac{ - 2}{7} x \bigg) = 44 }

  • Solving it further

 \mathsf{ \implies \:  \:  \dfrac{11}{35}x = 44 }

  • Multiplying Both Sides By 35/11

 \mathsf{ \implies \:  \: </strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>( \</strong><strong>d</strong><strong>frac{ \cancel{35}}{ \cancel{11}}</strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>) \times  }</strong><strong> </strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>( \</strong><strong>d</strong><strong>frac { \cancel{11}}{ \cancel{35}}</strong><strong> </strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>) = </strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>(</strong><strong> \</strong><strong>d</strong><strong>frac{35}{ \cancel{11}} </strong><strong>\</strong><strong>b</strong><strong>i</strong><strong>g</strong><strong>g</strong><strong>) \times  \cancel{(44)}

 \implies \:  \: x = 35 \times 4

 \implies \:  \: x  = 140

Answered by Anonymous
37

ᴀɴsᴡᴇʀ

Let the number be x.

\sf~ \frac{3}{5} x =  \frac{2}{7} x + 44

⟹\sf~ \frac{3x}{5}  =  \frac{2x}{7}  + 44

⟹\sf~ \frac{3x}{5}  -  \frac{2x}{7}  = 44

⟹\sf~ \frac{21x - 10x}{35}  = 44

⟹\sf~ \frac{11x}{35}  = 44

⟹\sf~x = 44 \times  \frac{35}{11}

⟹\sf~x = 4  \times 35

⟹\sf~x = 140

∴ The number is 140

Similar questions