Math, asked by jyothikomanapalli123, 1 year ago

if 3 power x =5 power x-2

Answers

Answered by Anonymous
4

Correct question :-

If 3ˣ = 5ˣ⁻², then find the value of x.

Answer :-

Value of x is 2log 5/(log 5/3)

Solution :-

3ˣ = 5ˣ⁻²

Taking log on both sides

⇒ log 3ˣ = log 5ˣ⁻²

⇒ xlog 3 = (x - 2)log 5

[ ∵ log aᵐ = mlog a]

⇒ xlog 3 = xlog 5 - 2log5

⇒ 2log5 = xlog 5 - xlog 3

⇒ 2log 5 = x(log 5 - log 3)

⇒ 2log 5 = x(log 5/3)

[∵log x - log y = log x/y]

⇒ 2log 5/(log 5/3) = x

⇒ x = 2log 5/(log 5/3)

the value of x is 2log 5/(log 5/3)

Answered by DhanyaDA
2

Given

 {3}^{x}  =  {5}^{(x - 2)}

To find

The value of x

Consider

 {3}^{x}  =  {5}^{(x - 2)}

Applying log on both sides

log {3}^{x}  = log {5}^{(x - 2)}

we know that

\underline{\sf loga^m=mloga}

Using the formula

xlog3 = (x - 2)log5

 =  > xlog3 = xlog5 - 2log5

 =  > xlog3 - xlog5 =  - 2log5

 =  > x(log3 - log5) =  - 2log5

 =  > x =  \dfrac{-2log5}{log3 - log5}  \\  =  > x =   \frac{2log5}{log5 - log3}

Using the below formula

\underline{\sf logm-logn=log\dfrac{m}{n}}

\boxed{\sf x=\dfrac{2log5}{log\dfrac{5}{3}}}

Some more important formulas:

 =  > log1 = 0

 =  > logm + logn = logmn

 =  > logm - logn = log \dfrac{m}{n}

 =  > log  {a}^{n}  = nloga

Similar questions