if √ 5/3 and -√ 5/3 are two zeroes of polynomial 3x^4 +6x^3-2x^2-10x-5, then it's other two zeroes are
Attachments:
Answers
Answered by
3
option (a). -1,-1 are the other zeroes of the given polynomial. you can confirm it by substituting the options in the given polynomial
Hope this helps you :)
Hope this helps you :)
siddhartharao77:
I think it will be option (a) : -1,-1
Answered by
8
Given x = root 5/3 and x = root -5/3.
x - root 5/3 = 0 and x + root 5/3 = 0
x^2 - 5/3 = 0.
Given polynomial 3x^4 + 6x^3 - 2x^2 - 10x - 5.
We should apply the division algorithm.
x^2 - 5/3) 3x^4 + 6x^3 - 2x^2 -10x - 5(3x^2 + 6x + 3
3x^4 - 5x^2
-----------------------------------------
6x^3 + 3x^2 - 10x - 5
6x^3 - 10x
---------------------------------------------
3x^2 -5
3x^2 -5
-----------------------------------------------------
0
------------------------------------------------------
Quotient is 3x^2 + 6x + 3
3x(x+1) + 3(x+1)
(3x+1)(x+1) = 0
3(x+1)(x+1) = 0
(x+1)(x+1) = 0
x = -1,-1.
x - root 5/3 = 0 and x + root 5/3 = 0
x^2 - 5/3 = 0.
Given polynomial 3x^4 + 6x^3 - 2x^2 - 10x - 5.
We should apply the division algorithm.
x^2 - 5/3) 3x^4 + 6x^3 - 2x^2 -10x - 5(3x^2 + 6x + 3
3x^4 - 5x^2
-----------------------------------------
6x^3 + 3x^2 - 10x - 5
6x^3 - 10x
---------------------------------------------
3x^2 -5
3x^2 -5
-----------------------------------------------------
0
------------------------------------------------------
Quotient is 3x^2 + 6x + 3
3x(x+1) + 3(x+1)
(3x+1)(x+1) = 0
3(x+1)(x+1) = 0
(x+1)(x+1) = 0
x = -1,-1.
Similar questions