Math, asked by chhavigrewal15, 10 months ago

If A= 45° , Verify that Sin3A = 3sinA – 4sin3 A. pls solve neatly​

Answers

Answered by Anonymous
8

To Prove :

\sf \implies \sin3A = 3 \sin A - 4  { \sin}^{3} A\\

When A = 45°

Proof :

 \sf\implies\sin3A = 3 \sin A - 4  { \sin}^{3} A\\ \\\sf\implies\sin3 \times 45 = 3 \sin45 - 4  { \sin}^{3}45 \\  \\ \sf\implies\sin135 = 3 \times  \frac{1}{ \sqrt{2} }  - 4 \times ( { \frac{1}{ \sqrt{2} }) }^{3}  \\  \\\sf\implies \cos45 =  \frac{3}{ \sqrt{2} }  - 4 \times   \frac{1}{ \sqrt{8} } \\  \\ \sf\implies \frac{1}{ \sqrt{2} }   =  \frac{3}{ \sqrt{2} }  - \frac{4}{ \sqrt{8} }   \\  \\\sf\implies  \frac{1}{ \sqrt{2} }  =  -  \frac{6 - 4}{ \sqrt{8} }  \\  \\ \sf\implies \frac{1}{ \sqrt{2} }  =  \frac{2}{ \sqrt{8} }  \\  \\\sf\implies  \frac{1}{ \sqrt{2} }  = \frac{2}{2 \sqrt{2} }  \\  \\\sf\implies  \frac{1}{ \sqrt{2} }  = \frac{1}{ \sqrt{2} }

LHS = RHS

Hence Proved

Answered by AnIntrovert
29

\large\red{\underline{\boxed{\textbf{Brainliest\:Please}}}}

Attachments:
Similar questions