Math, asked by BEAUTYBOOM, 2 months ago

If a = √5 - 2, then a -1/a is _______ *​

Answers

Answered by tennetiraj86
0

Step-by-step explanation:

Given:-

a = √5-2

To find:-

Find the value of a -(1/a) ?

Solution:-

Given that

a = √5 -2

1/ a = 1/(√5-2)

We know that

The Rationalising factor of √a-b = √a+b

The Rationalising factor of √5-2 = √5+2

On Rationalising the denominator then

=>[ 1/(√5-2) ]×[ (√5+2)/(√5+2)]

=> (√5+2)/[(√5-2)(√5+2)]

The denominator is in the form of (a+b)(a-b)

Where a = √5 and b=2

We know that

(a+b)(a-b) = a^2-b^2

=>(√5+2)/[(√5)^2-2^2]

=> (√5+2)/(5-4)

=>(√5+2)/1

=>√5+2

1/a = √5 +2

Now

a -(1/a)

=> (√5-2)- (√5+2)

=>√5-2 - √5 -2

=>(√5-√5)+(-2-2)

=>-4

Answer:-

The value of a-(1/a) for the given problem is -4

Used formulae:-

  • The Rationalising factor of √a-b = √a+b

  • (a+b)(a-b) = a^2-b^2

Answered by sharmamanasvi007
10

Answer:

\large \blue{ \fcolorbox{purple}{lavenderblush}{ \: \textsf{\ \ \ \ddag \ \ \ \pink{QUESTION}\ \ \ \ddag \ \ \ }}}

a = √5 - 2

 \frac{ 1}{a}  =  \frac{1}{ \sqrt{5}  - 2}  \\  \\ \sf{\implies = \frac{1}{ \sqrt{5}  - 2} \times \frac{ \sqrt{5} + 2 }{ \sqrt{5}   +  2}} \\  \\ \sf{\implies\frac{1( \sqrt{5} + 2) }{  ({ \sqrt{5} })^{2}  -  ({2})^{2}} } \\  \\  \sf{\implies \frac{ \sqrt{5}  + 2}{5 - 4}}  \\  \\  \sf{\implies \frac{ \sqrt{5}  + 2}{1} } \\  \\ \sf{\implies \sqrt{5}  + 2}

So, value of \frac{1}{a} = √5 + 2

 \\

a -  \frac{1}{a}  = ( \sqrt{5}  - 2) - ( \sqrt{5}  + 2) \\  \sqrt{5}  - 2 -  \sqrt{5}  - 2 \\  - 2 - 2 \\   \boxed{ - 4}

✯✯✯✯✯_________________________✯✯✯✯✯

\bold \star\red{\underline{\boxed{Hope \: it \: helps \: you}}}\star

\bold \star\orange{\underline{\boxed{Pls \: follow \: kar \: do}}}\star

\bold \star\red{\underline{\boxed{Pls \: mark \: me\: brainlist}}}\star

✯✯✯✯✯_________________________✯✯✯✯✯

Similar questions