Math, asked by jjessesharon, 1 year ago

If a=8+3√7 and b=1/a, what will be the value of a²+b²?

Answers

Answered by Anonymous
21
\huge\blue{Heya}

\textbf{Given :-}

a = 8 + 3√7

b = 1/a

b = 1/(8 + 3√7)

b = \frac{1}{8 + 3 \sqrt{7} } \times \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} } \\ \\ b = \frac{8 - 3 \sqrt{7} }{ {(8)}^{2} - {(3 \sqrt{7}) }^{2} } \\ \\ b = \frac{8 - 3 \sqrt{7} }{64 - 63} \\ \\ b = 8 - 3 \sqrt{7}

Now,.

\textbf{To find :-}

a² + b²

= (8 + 3√7)² + (8 - 3√7)²

= (8)² + (3√7)² + 2(8)(3√7) + (8)² + (3√7)² - 2(8)(3√7)

= 64 + 63 + 48√7 + 64 + 63 - 48√7

= 254

\textbf{Hope this helps you.}
Answered by Anonymous
8
given :-

a = 8 + 3√7

therefore \:  \frac{1}{a}  =  \frac{1}{8 + 3 \sqrt{7} }  \\  \\  =  \frac{1}{8 + 3 \sqrt{7} }  \times  \frac{8 - 3 \sqrt{7} }{8 - 3 \sqrt{7} }  \\  \\  =  \frac{8 - 3 \sqrt{7} }{(8 + 3 \sqrt{7})(8 - 3 \sqrt{7} ) }  \\  \\  =  \frac{8 - 3 \sqrt{7} }{ {(8)}^{2}  -  {(3 \sqrt{7} )}^{2} }  \\  \\  =  \frac{8 - 3 \sqrt{7} }{64 - 63}  \\  \\  = 8 - 3 \sqrt{7}


ATQ, b = 1/a

hence, the value of b is = 8 - 3√7

now we have to find a² + b²

= (8 +3√7)² + (8 - 3√7)²

= (8)² + 2(8)(3√7) + (3√7)² + (8)² - 2(8)(3√7) + (3√7)²

= 64 + 48√3 + 63 + 64 - 48√7 + 63

= 254

HOPE THIS HELPS..!!
Similar questions