If a+b+c =15 and a²+b²+c² = 83, find the value of
a³+b³ +c³-3abc.
Answers
Answer:
a³+b³ +c³- 3abc = 180
Step-by-step Explanation:
Given:-
- a+b+c = 15
- a²+b²+c² = 83
To find:-
- Value of a³+b³ +c³- 3abc
Solution:-
(a+b+c)² = a²+b²+c² + 2ab + 2bc + 2ca
= (a²+b²+c²) + 2(ab + bc + ca)
⇒2(ab + bc + ca) = (a+b+c)² - (a²+b²+c²)
= (15)² - (83)
= 225 - 83
= 142
⇒2(ab + bc + ca) = 142
⇒ab + bc + ca = 142 ÷ 2
⇒ab + bc + ca = 71
a³+b³ +c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
= (15)[ (a² + b² + c²) - (ab + bc + ca) ]
= 15[ (83) - (71)]
= 15[83 - 71]
= 15[12]
= 180
⇒a³+b³ +c³- 3abc = 180
More things to know:-
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2 ca
= a² + b² + c² + 2(ab + bc + ca)
- (a + b)³ = a³ + b³ + 3ab(a + b)
= a³ + b³ + 3a²b + 3ab²
- (a - b)³ = a³ - b³ - 3ab(a - b)
= a³ - b³ - 3a²b + 3ab²
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³+b³ +c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
I hope that it helped you.
Mark my answer as the brainliest and follow me :-).
Answer:
180
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!