Math, asked by agarwalsrishti625, 7 months ago

If a+b+c =15 and a²+b²+c² = 83, find the value of
a³+b³ +c³-3abc.​

Answers

Answered by mohammadmohibjamal
7

Answer:

a³+b³ +c³- 3abc = 180

Step-by-step Explanation:

Given:-

  • a+b+c = 15
  • a²+b²+c² = 83

To find:-

  • Value of  a³+b³ +c³- 3abc

Solution:-

(a+b+c)² = a²+b²+c² + 2ab + 2bc + 2ca

              = (a²+b²+c²) + 2(ab + bc + ca)

⇒2(ab + bc + ca) = (a+b+c)² - (a²+b²+c²)

                            = (15)² - (83)

                            = 225 - 83

                            = 142

⇒2(ab + bc + ca) = 142

⇒ab + bc + ca = 142 ÷ 2

ab + bc + ca = 71                                            

a³+b³ +c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

                          = (15)[ (a² + b² + c²) - (ab + bc + ca) ]

                          = 15[ (83) - (71)]

                          = 15[83 - 71]

                          = 15[12]

                          = 180

a³+b³ +c³- 3abc = 180

More things to know:-

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2 ca

                           = a² + b² + c² + 2(ab + bc + ca)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

                     =  a³ + b³ + 3a²b + 3ab²

  • (a - b)³ = a³ - b³ - 3ab(a - b)                    

                    = a³ - b³ - 3a²b + 3ab²

  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • a³+b³ +c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)

I hope that it helped you.

Mark my answer as the brainliest and follow me :-).

Answered by Salmonpanna2022
1

Answer:

180

Step-by-step explanation:

Given: a + b + c = 15, a² + b² + c² = 83

∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

⇒ 15² = 83 + 2(ab + bc + ca)

⇒ 225 - 83 = 2(ab + bc + ca)

⇒ 142 = 2(ab + bc + ca)

⇒ ab + bc + ca = 71

Now,

a³ + b³ + c³ - 3abc:

= (a + b + c)(a² + b² + c² - ab - bc - ca)

= (a + b + c)(a² + b² + c² - (ab + bc + ca))

= (15)(83 - 71)

= 180.

Hence, the value of ++-3abc is 180

Hope it helps!

Similar questions