If a,b,c are in AP as well as in GP then show that a=b=c.
Answers
Answered by
1
Given : a, b, c are in A.P.
⇒ 2b = a + c .......(1)
⇒ (2b)2 = (a + c)2
⇒ 4b2 = a2 + c2 + 2ac ....(2)
Also,
a, b, c are in G.P.
⇒ b2 = ac ......(3)
Fron (2) and (3) we get
4ac = a2 + c2 + 2ac
⇒ a2 + c2 + 2ac - 4ac = 0
⇒ a2 + c2 - 2ac = 0
⇒ (a - c)2 = 0
⇒ a - c = 0
⇒ a = c ....(4)
From (1) and (4) we get
2b = a + a = c + c
⇒ 2b = 2a = 2c
⇒ a = b = c
Answered by
3
Answer:
Step-by-step explanation:
Given : a, b, c are in A.P.
⇒ 2b = a + c .......(1)
⇒ (2b)2 = (a + c)2
⇒ 4b2 = a2 + c2 + 2ac ....(2)
Also,
a, b, c are in G.P.
⇒ b2 = ac ......(3)
Fron (2) and (3) we get
4ac = a2 + c2 + 2ac
⇒ a2 + c2 + 2ac - 4ac = 0
⇒ a2 + c2 - 2ac = 0
⇒ (a - c)2 = 0
⇒ a - c = 0
⇒ a = c ....(4)
From (1) and (4) we get
2b = a + a = c + c
⇒ 2b = 2a = 2c
⇒ a = b = c
HOPE IT HELPS..!!
Similar questions