If A cos - B sin = x and A sin + B cos = y then prove that A^2 + B^2 = x^2 + y^2.
Answers
Answered by
2
Answer:
a cosθ - b sinθ = x and a sinθ + b cosθ = y
R.H.S. = x2 + y2
= (a cosθ - b sinθ)2 + (a sinθ + b cosθ)2
= a2cos2θ - 2ab cosθ sinθ + b2sin2θ + a2sin2θ + 2absinθ cosθ + b2cos2θ
= (a2+b2) cos2θ + (b2+a2)sin2θ
= (a2+b2)cos2θ + (a2+b2)sin2θ
= (a2+b2)(cos2θ + sin2θ)
= (a2+b2) [∵ cos2θ + sin2θ = 1]
= L.H.S. ∴ a2+b2 = x2+y2.
Similar questions
Geography,
4 months ago
Math,
4 months ago
Business Studies,
4 months ago
Math,
9 months ago
Chemistry,
9 months ago
Science,
1 year ago
World Languages,
1 year ago