Math, asked by radheykaran7, 11 months ago

if a polynomial x ki power 4 - 8 x cube minus 18 x square - 3 x minus Q is exactly divisible by 4 x square - 4 x + 1 then find the value of P and Q​

Answers

Answered by SteffiPaul
0

Given:

x^{4} - 8x^{3} -18x^{2} -3x -q   -(1)

is divisible by 4x^{2} - 4x +1    -(2)

To find:

Value of q

Answer:

Since equation 1 is divisible by equation 2.

4x^{2} - 4x +1) x^{4} - 8x^{3} -18x^{2} -3x -q (\frac{x^{2} }{4} -\frac{7x}{4}+ \frac{5}{16}

                      x^{4} -x^{3} +\frac{x^{2} }{4}

                     ____________________

                             -7x^{3} - \frac{73x^{2} }{4} -3x -q

                              -7x^{3} +7x^{2} \frac{-7x}{4}

                             _________________

                                           \frac{5x^{2} }{4} -\frac{5x}{4} -q

                                           \frac{5x^{2} }{4} -\frac{5x}{4} + \frac{5}{16}

We know that the reminder on division is 0.

⇒ q = -5/16

Thus, the value of q = -5/16

                                     

Similar questions