Math, asked by toufiqkadir62aryan, 1 year ago

If a solid sphere of radius 10cm is moulded into 8 spherical solo balls of equal radius, then the surface area of each ball

Answers

Answered by Anant02
70

volume \: of \: each \: small \: ball =  \frac{volume \: of \: sphere}{8}  \\  \frac{4\pi {r}^{3} }{3}  =  \frac{4\pi {10}^{3} }{8 \times 3}  \\   {r}^{3 }  =  { (\frac{10}{2} )}^{3}  \\ r = 5cm \\ surface \: area \: of \: each \: ball = 4\pi \:  {r}^{2}  \\  = 4  \times  \frac{22}{7}  \times 5 \times 5 \\  =  \frac{2200}{7}  = 3.14 \times 100 = 314 {cm}^{2}
Answered by wifilethbridge
19

Answer:

314 cm^2  

Step-by-step explanation:

Radius of big sphere = 10 cm

Volume of big sphere =\frac{4}{3}\pi r^3

                                     =\frac{4}{3} \times 3.14 \times 10^3

                                     =4186.66666667

Since we are given that this big sphere is recast into 8 identical spherical balls of same radius.

So, Volume of big sphere = Volume of 8 spheres

So, Volume of 1 Spherical ball = \frac{4186.66666667}{8}

                                                   = 523.333333334

Volume of spherical ball =\frac{4}{3}\pi r^3

So,  523.333333334=\frac{4}{3} \times 3.14 r^3

        \frac{523.333333334}{\frac{4}{3} \times 3.14}= r^3                

        125= r^3                        

        \sqrt{3}{125}= r            

        5= r                                          

Surface area of each ball = 4 \pi r^2  

                                           = 4 \times 3.14 \times (5)^2  

                                           = 314 cm^2  

Hence  the surface area of each ball is  314 cm^2  

Similar questions