Math, asked by raamuimages5202, 9 months ago

If alpha are the zeros of PX x square - 5 x + 6 then find one upon alpha plus one upon beta

Answers

Answered by himanshuMerta
0

Answer:

See attachment for solution

Mark me as brainliest

Attachments:
Answered by BrainlyConqueror0901
9

COMPLETE QUESTION :

If alpha and beta are the zeros of P(x),x square - 5 x + 6 then find one upon alpha plus one upon beta.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{\alpha}+\frac{1}{\beta}=\frac{5}{6}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{given: }} \\  \tt{:  \implies  {x}^{2}  - 5x + 6 = 0} \\  \\  \tt{: \implies  \alpha  \: and \:  \beta  \: are \: the \: zeroes} \\  \\  \red{\underline \bold{to \: find: }} \\  \tt{: \implies  \frac{1}{\alpha }  +  \frac{1}{ \beta }  =?}

• According to given question :

 \tt{: \implies  {x}^{2} - 5x + 6 = 0} \\   \\  \bold{solving \: by \: middle \: term \: spliting} \\  \tt{: \implies  {x}^{2}  - 2x - 3x + 6 = 0} \\  \\  \tt{: \implies x(x - 2) - 3(x - 2)  = 0} \\  \\  \tt{: \implies (x - 3)(x - 2) = 0} \\  \\  \green{\tt{: \implies x = 3 \: and \: 2}} \\    \\    \green{\circ \:  \alpha  = 3} \\  \\   \green{ \circ \:  \beta  = 2} \\  \\  \bold{for \: finding \: value : } \\  \tt{:  \implies  \frac{1}{\alpha}  +  \frac{1}{ \beta } } \\  \\  \tt{:  \implies  \frac{1}{3} + \frac{1}{2}}  \\  \\  \tt{: \implies  \frac{2+3}{6} } \\  \\   \green{\tt{:  \implies  \frac{5}{6} }}

Similar questions