Math, asked by jithander, 1 year ago

if cosec theta+cot theta =k then prove that cos theta =ksquare-1/ksquare+1

Answers

Answered by Vanshika08112003
65
Your answer is in attachment





hope this helps you
Attachments:
Answered by parmesanchilliwack
53

Answer:

Given,

cosec\theta + cot \theta = k  ------(2)

By the trigonometry identity,   cosec² A - cot² A = 1,

cosec^2 \theta - cot^2 \theta = 1

(cosec \theta - cot \theta)(cosec \theta + cot \theta) = 1

(cosec \theta - cot \theta).k = 1

(cosec \theta - cot \theta) = \frac{1}{k} ------(2),

Equation (2) + Equation (1),

We get,

2cosec \theta= k + \frac{1}{k}=\frac{k^2+1}{k}

\implies cosec \theta = \frac{k^2+1}{2k}

\implies \frac{1}{sin\theta}=\frac{k^2+1}{2k}

\implies sin \theta = \frac{2k}{k^2+1}

Now, we know that, cos A = √(1-sin²A)

\implies cos A = \sqrt{1-(\frac{2k}{(k^2+1})^2}

\implies cos A = \sqrt{1-\frac{4k^2}{(k^2+1)^2}}

= \sqrt{(k^2+1)^2-\frac{4k^2}{(k^2+1)^2}}

= \sqrt{\frac{k^4+2k^2+1-4k^2}{(k^2+1})^2}

= \sqrt{\frac{k^4-2k^2+1}{(k^2+1)^2}

= \sqrt{\frac{(k^2-1)^2}{(k^2+1)^2}}

=\frac{(k^2-1)}{(k^2+1)}

Hence, proved.....

Similar questions