Math, asked by harithus, 1 year ago

if cosecX-sinX =a and secX-cosX=b then 1/ab[1/a+1/b]

Answers

Answered by cherry143
8
hope this wil help u
Attachments:

mimitabiswas: I think the answer would be cot^2 x+ tan ^2 x, because 1-sin^2 x= cos^2 x and vice-versa.
cherry143: ur right sry for qrong ans
Answered by sharmaaashutosh169
0

The formula will use to solve the problem

1. sin x^{2} + \cos^{2} x =1

2. tan x=\frac{sinx}{cosx}

3. cotx=\frac{cosx}{sin x}

Given cosecx-sinx =a and secx-cosx=b.

We have to find the value of \frac{1}{ab}[ \frac{1}{a}+\frac{1}{b}].

First, find the value of a and b

a=\frac{1}{sinx } -sinx

  =\frac{1-sin^{2}x }{sinx}

  =\frac{ \cos ^{2}x}{\sin x}

  =\cos x\cot x

and

b=\frac{1}{\cos x}-\cos x

  =\frac{1-\cos ^{2}x}{\cos x}

  =\frac{\sin ^{2}x}{\cos x}

 =\sin x\tan x

Now find the value of given expression

\frac{1}{ab}[ \frac{1}{a}+\frac{1}{b}]=\frac{1}{(\cos x\cot x)(\sin x\tan x)}[ \frac{1}{\cos x\cot x}+\frac{1}{\sin x\tan x}]

               =\frac{\sin x\tan x+\cos x\cot x}{(\cos x\cot x\sin x\tan x)^2}

               =\frac{\sin x\tan x+\cos x\cot x}{(\cos x\sin x)^2}

              =\frac{\sin x\tan x}{(\cos x\sin x)^2}+\frac{\cos x\cot x}{(\cos x\sin x)^2}

             =\frac{1}{\sin ^{3}x}+\frac{1}{\cos ^{3}x}

Hence the value is \frac{1}{\sin ^{3}x}+\frac{1}{\cos ^{3}x}.

Similar questions