Math, asked by souviksharma2020, 4 months ago

If cosx-sinx=/2sinx,prove that cosx+sinx=/2cosx

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:cosx - sinx =  \sqrt{2}sinx

\large\underline{\sf{To\:prove- }}

\rm :\longmapsto\:cosx + sinx =  \sqrt{2}cosx

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cosx - sinx =  \sqrt{2}sinx

can be rewritten as

\rm :\longmapsto\:cosx =  \sqrt{2}sinx + sinx

\rm :\longmapsto\:cosx =  (\sqrt{2} +1) sinx

On rationalizing the numerator on RHS, we get

\rm :\longmapsto\:cosx =  (\sqrt{2} +1) sinx \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}

\rm :\longmapsto\:( \sqrt{2} - 1)cosx = ( {( \sqrt{2})}^{2} -  {1}^{2})sinx

\rm :\longmapsto\:( \sqrt{2} - 1)cosx = ( 2 - 1)sinx

\rm :\longmapsto\:( \sqrt{2} - 1)cosx = sinx

\rm :\longmapsto\: \sqrt{2}cosx - cosx = sinx

\bf\implies \:\:cosx + sinx =  \sqrt{2}cosx

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions