Math, asked by singhash030, 1 year ago

If p sin theta +q cos theta =a and p cos theta -q cos theta =b then p+a/q+b+q-b/p-a is equal to?

Answers

Answered by rajeev378
19
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer in the attachment


\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope \: it \: helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!}}}

<marquee>
\huge\bf{\huge{\bf{\bf{@...rajeev378}}}}
Attachments:
Answered by MonarkSinghD
20
Hi friends

Here is your answer
I

a = p \: sin \alpha  + q \: cos \alpha  \\  {a}^{2}  =  {p}^{2} sin {}^{2}  \alpha  +  {q}^{2} cos \alpha  + 2pqsin \alpha  \cos( \alpha )
II
b = p \cos( \alpha )  - q \sin( \alpha )  \\ on \: squaring \\  {b}^{2}  =  {p}^{2}  \cos {}^{2} ( \alpha )  +  {q}^{2}  \sin {}^{2} ( \alpha )  - 2pq  \sin( \alpha )  \cos( \alpha )
On Adding both equation
 {a}^{2}  +  {b}^{2}  =  {p}^{2} ( \sin {}^{2} ( \alpha )  + q {}^{2} \cos {}^{2} ( \alpha )  ) +  {q}^{2} ( \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha ) )  \\  \\  {a}^{2}  +  {b}^{2}  =  {p}^{2}  +  {q}^{2}  \\ as \:  \sin {}^{2} ( \alpha )  +  \cos {}^{2} ( \alpha )  = 1
Now we find the value
 \frac{p + a}{q + b}  +  \frac{q - b}{p - a}  \\  \\  =  \frac{ {p}^{2}  -  {a}^{2}  +  {q}^{2} -  {b}^{2}  }{(q + b)(p - a)}  \\  \\  =  \frac{ {a}^{2}  +  {b}^{2}  -  {a}^{2} -  {b}^{2}  }{(q + b)(p - a)}  \\  \\  = 0
Hope it helps you

@ MSD
Similar questions