Math, asked by ahmedfahi97, 10 months ago

If \frac{3}{2-\sqrt{2} }=a+b\sqrt{2}, find the values of a and b

Answers

Answered by Vamprixussa
6

Given

\dfrac{3}{2-\sqrt{2} } = a+b\sqrt{2}

LHS

= \dfrac{3}{2-\sqrt{2} }

= \dfrac{3}{2-\sqrt{2} } \times \dfrac{2+\sqrt{2} }{2+\sqrt{2} }

= \dfrac{6+3\sqrt{2} }{(2)^{2} -(\sqrt{2})^{2} }

= \dfrac{6+3\sqrt{2} }{4-2 }

= \dfrac{6+3\sqrt{2} }{2 }

= 2 + \dfrac{3\sqrt{2} }{2}

Therefore,

\boxed{\boxed{\bold{a=2}}}}}}}}}

\boxed{\boxed{\bold{b=\frac{3}{2} }}}}}

                                                       

Answered by pinkypony60
0

Step-by-step explanation:

HOPE IT HELPS YOU.

PLS MARK IT AS BRAINLIEST

Attachments:
Similar questions