If,
Prove that;
Answers
Answered by
3
Heya !!
Given :- sinA + sin²A + sin³A = 1
To prove :- cos^6A - 4cos⁴A + 8cos²A = 4
Proof :- sinA + sin²A + sin³A = 1
=> sinA + sin³A = 1 - sin²A
=> sinA + sin³A = cos²A
Squaring on both sides
(sinA + sin³A)² = (cos²A)²
=> sin²A + 2sin⁴A + sin^6A = cos⁴A
=> (1 - cos²A) + 2(sin²A)² + (sin²A)³ = cos⁴A
=> (1 - cos²A) + 2(1 - cos²A)² + (1 - cos²A)³ = cos⁴A
=> (1 - cos²A) + (2 - 4cos²A + 2cos⁴A) + (1 - 3cos²A + 3cosA -cos^6A) = cos⁴A
=> 4 - 8cos²A + 5cos⁴A - cos^6A = cos⁴A
=> 4 - 8cos²A + 4cos⁴A - cos^6A = 0
=> cos^6A - 4cos⁴A + 8cos²A = 4
Hence, proved.
Given :- sinA + sin²A + sin³A = 1
To prove :- cos^6A - 4cos⁴A + 8cos²A = 4
Proof :- sinA + sin²A + sin³A = 1
=> sinA + sin³A = 1 - sin²A
=> sinA + sin³A = cos²A
Squaring on both sides
(sinA + sin³A)² = (cos²A)²
=> sin²A + 2sin⁴A + sin^6A = cos⁴A
=> (1 - cos²A) + 2(sin²A)² + (sin²A)³ = cos⁴A
=> (1 - cos²A) + 2(1 - cos²A)² + (1 - cos²A)³ = cos⁴A
=> (1 - cos²A) + (2 - 4cos²A + 2cos⁴A) + (1 - 3cos²A + 3cosA -cos^6A) = cos⁴A
=> 4 - 8cos²A + 5cos⁴A - cos^6A = cos⁴A
=> 4 - 8cos²A + 4cos⁴A - cos^6A = 0
=> cos^6A - 4cos⁴A + 8cos²A = 4
Hence, proved.
Shatakshi96:
thx.
Similar questions