Math, asked by withsarahlearnpiano, 6 months ago

If the area of the rectangle is 25⅔ m and breadth of the rectangle is 3⅔ m, then find its length. Also, justify if the value of length is a rational number or not?

Answers

Answered by narayangupta475
1

Answer:

4rt two pay yar answers

Answered by EliteZeal
104

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Area of rectangle = 25⅔ sq. m

 \:\:

  • Breadth of rectangle = 3⅔ m

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

  • Length of rectangle

 \:\:

  • Verify it if it is a rational number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length be "l"

 \:\:

 \underline{\bold{\texttt{Area of rectangle :}}}

 \:\:

➠ Length × Breadth

 \:\:

Given that area of rectangle is 25⅔ =  \sf \dfrac { 77 } { 3 }

 \:\:

So ,

 \:\:

  • length = l

  • breadth = 3⅔ m =  \sf \dfrac { 11 } { 3 }

 \:\:

 \sf \dfrac { 77 } { 3 } = Length × Breadth

 \:\:

 \sf \dfrac { 77 } { 3 } = l \times \dfrac { 11 } { 3 }

 \:\:

 \sf l = \dfrac { 77 } { 3} ÷ \dfrac { 11 } { 3 }

 \:\:

 \sf l = \dfrac { 77 } { 3 } \times \dfrac { 3 } { 11 }

 \:\:

 \sf l = 7 m

 \:\:

Now we will try to express 7 in the form of  \sf \dfrac { p } { q } where q ≠ 0

 \:\:

 \sf 7 = \dfrac { 7 } { 1 }

 \:\:

Here q ≠ 0 hence we successfully expressed 7 in the form of  \sf \dfrac { p } { q } where q ≠ 0

 \:\:

  • So "l" i.e length is a rational number
Similar questions