if the roots of the eq (b-c) x2 + (c-a)x+(a-b)=0 are equal prove that 2a=a+c
Answers
Answered by
1
Hi ,
( b - c )x² + ( c - a )x + ( a - b ) = 0
compare given quadratic equation with
Ax² + Bx + C = 0 ,
A = b - c ;
B = c - a ;
C = a - b ;
it is given that roots of the given equation are
equal.
discreaminant = 0
B² - 4AC = 0
( c - a )² - 4 ( b - c ) ( a - b ) = 0
c² + a² - 2ac - 4ab + 4b² + 4ac - 4bc = 0
c² + a² + 4b² + 2ac - 4ab - 4bc = 0
c² + a² + (- 2b)²+2×ca + 2 ×a×(-2b ) +2×(-2b)c=0
( c + a - 2b )² = 0
Therefore ,
c + a - 2b = 0
c + a = 2b
Hence proved .
I hope this helps you.
:)
( b - c )x² + ( c - a )x + ( a - b ) = 0
compare given quadratic equation with
Ax² + Bx + C = 0 ,
A = b - c ;
B = c - a ;
C = a - b ;
it is given that roots of the given equation are
equal.
discreaminant = 0
B² - 4AC = 0
( c - a )² - 4 ( b - c ) ( a - b ) = 0
c² + a² - 2ac - 4ab + 4b² + 4ac - 4bc = 0
c² + a² + 4b² + 2ac - 4ab - 4bc = 0
c² + a² + (- 2b)²+2×ca + 2 ×a×(-2b ) +2×(-2b)c=0
( c + a - 2b )² = 0
Therefore ,
c + a - 2b = 0
c + a = 2b
Hence proved .
I hope this helps you.
:)
Answered by
4
If the roots of quadratic equation are equal, discriminant is 0 .
b² - 4ac = 0
(c-a) ² - 4 ( b-c) (a - b ) = 0
c²+a²-2ac -4 { ab-b²-ac+bc} = 0
c²+a²-2ac-4ab+4b²+4ac-4bc= 0
a²+c²+(-2b)²+2(a)(c) +2(-2b)(a) +2(-2n)(c) = 0
( a + c -2b) ² = 0
a+ c -2b = 0
a+c=2b .
Hope helped!
b² - 4ac = 0
(c-a) ² - 4 ( b-c) (a - b ) = 0
c²+a²-2ac -4 { ab-b²-ac+bc} = 0
c²+a²-2ac-4ab+4b²+4ac-4bc= 0
a²+c²+(-2b)²+2(a)(c) +2(-2b)(a) +2(-2n)(c) = 0
( a + c -2b) ² = 0
a+ c -2b = 0
a+c=2b .
Hope helped!
Similar questions
Physics,
7 months ago
Physics,
7 months ago
Science,
7 months ago
Science,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
India Languages,
1 year ago