Math, asked by gagan138, 1 year ago

if the term of an ap is 1 /n and nth term is 1/ m then show that its (MN )th term is 1


dharun1: what a question!

Answers

Answered by somyas1612
6
Am=1/n
a+(m-1)d=1/n
a+md-d=1/n. 1
An=1/m
a+(n-1)d=1/m
a+nd-d=1/m. 2
1-2
(m-n)d=1/n-1/m
(m-n)d=m-n/mn
d=1/mn
Putting d=1/mn in eq.1
a+m(1/mn)-1/mn=1/n
a=1/mn
Amn=a+(mn-1)d
Amn=1/mn+mn/mn-1/mn
Amn=mn/mn
Amn=1
Hence proved
Answered by Anonymous
6
Hey..

Here's your answer..

_______________________________________________
am = 1 \div n \\ an = 1 \div m \\  \\ so....a + (m - 1)d = 1 \div n \\ a(n - 1)d = 1 \div m \\  \\ subtracting \: equtions \: we \: get \: ... \\ d(m - 1  - n + 1) = m - n \div mn \\ d(m - n) = m - n \div mn \\  \\  \\ thus \: d = 1 \div mn \\  \\  \\ now \: putting \: value \: of \: d \: in \: any \: of \: these \: equation \\  \\ a \: will \: be \: 1 \div mn \\  \\
now \: a(mn) = a + (mn - 1)d \\  \\ 1 \div mn + mn \div mn - 1 \div mn \\  = 1
__________________________________________________


HOPE IT HELPS..

@Rêyaañ11
Similar questions