Math, asked by akshit321, 1 year ago

If x= 2+ √3 then the value of √x + 1/√x is?

Answers

Answered by MOSFET01
14
\underline{\large{Answer\: \colon}}

Given : x = 2 + √3

To Find :

 \sqrt{x} \: + \: \dfrac{1}{\sqrt{x}} \: = \: ?

Solution :

x = 2 + √3

then \dfrac{1}{x} is \dfrac{1}{2\: + \: \sqrt{3}}

Rationalise the value as given below ( follow the steps )

\dfrac{1}{x}\: = \: \dfrac{1}{2\: +\: \sqrt{3}}\times \dfrac{2\: - \:\sqrt{3}}{2\: - \:\sqrt{3}}

then ,

\dfrac{1}{x} \: = \: \dfrac{2\: - \: \sqrt{3}}{2^{2} \: - \: {\sqrt{3}}^{2}}

after rationalise we get the value of \dfrac{1}{x} is (2 - √3)

\dfrac{1}{x} \: = \: \dfrac{2\: - \: \sqrt{3}}{4\: - \: 3}

\dfrac{1}{x} \: = \: \dfrac{2\: - \: \sqrt{3}}{1}

\dfrac{1}{x} \: = \: (2\: - \: \sqrt{3})

after that

x \: + \: \dfrac{1}{x} \: = \: (2 \: + \sqrt{3}) \: + \: (2 \: - \: \sqrt{3})

eliminate √3

x \: + \: \dfrac{1}{x} \: = \: 2 \: + \: 2

x \: + \: \dfrac{1}{x} \: = \: 4

To get the value of  \sqrt{x} \: + \: \dfrac{1}{\sqrt{x}} add " 2 " both side :

x \: + \: \dfrac{1}{x} \: + \: 2= \: 4 \: + \: 2

then

{(\sqrt{x}})^{2} + {\Big(\dfrac{1}{\sqrt{x}}\Big)^{2}} + 2 \times \sqrt{x} \times \dfrac{1}{\sqrt{x}} \: = \: 6

{\Big(\sqrt{x}\: + \: \dfrac{1}{\sqrt{x}}\Big)}^{2} \: = \: 6

 \sqrt{x} + \dfrac{1}{\sqrt{x}}\: = \: \sqrt{6}

Hence answer is √6

HappiestWriter012: Awesome!
MOSFET01: Thanks
Similar questions