Math, asked by lohi7144, 10 months ago

if x = 3+2√2, find the value of (√x-1/√x)​

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(\sqrt{x}-\frac{1}{\sqrt{x}})=2}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies x= 3 +2\sqrt{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies( \sqrt{x} -  \frac{1}{\sqrt{x}} ) =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  (\sqrt{x}   -  \frac{1}{ \sqrt{x} } )^{2}  =  { (\sqrt{x} )}^{2}  +  \frac{1}{ (\sqrt{x})^{2}  }  - 2 \times  \sqrt{x}  \times  \frac{1}{ \sqrt{x} }  \\  \\  \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} = x +  \frac{1}{x}  - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =3 + 2 \sqrt{2}  +  \frac{1}{3 + 2 \sqrt{2} }  \times  \frac{3 - 2 \sqrt{2} }{3  - 2 \sqrt{2} }  - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =3 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{ {3}^{2}  -  {(2 \sqrt{2}) }^{2} }  - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =3 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{9 - 8}  - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =3 + 2 \sqrt{2}  + 3 -  2\sqrt{2}  - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =6 - 2 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }^{2} =4 \\  \\ \tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) }= \sqrt{4}  \\  \\  \green{\tt: \implies  {(\sqrt{x}- \frac{1}{\sqrt{x}}) } =2}

Answered by ғɪɴɴвαłσℜ
1

Aɴꜱᴡᴇʀ

Your answer is 2

_________________

Gɪᴠᴇɴ

 \large  \sf \longmapsto{}x =3 + 2 \sqrt{2}

_________________

Tᴏ ꜰɪɴᴅ

 \large \sf \longmapsto{} value \: of \: (\sqrt{x }   - \dfrac{1}{ \sqrt{x} } )

_________________

Sᴛᴇᴘꜱ

\sf \leadsto{ (\sqrt{x}  -  \frac{1}{ \sqrt{x} }{)}^{2}  = { (\sqrt{x}) }^{2}     - 2 \times  \cancel{ \sqrt{x} } \times  \frac{1}{ \cancel{ \sqrt{x}} } +  {( \frac{1}{ \sqrt{x} } )}^{2}   } \\  \\  \leadsto \sf( \sqrt{x  } -  \frac{1}{ \sqrt{x} }{)}^{2} = x +  \frac{1}{x}  - 2  \\  \\  \leadsto \sf ( \sqrt{x} -  \frac{1}{ \sqrt{x} } {)}^{2}   = 3 + 2 \sqrt{2}   +  \frac{1}{3 + 2 \sqrt{2}   } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }   - 2 \\  \\  \leadsto \sf ( \sqrt{x} -  \frac{1}{ \sqrt{x} }   {)}^{2}  = 3  +  \cancel{ 2 \sqrt{2}}  + {3 - \cancel{ 2 \sqrt{2}}} - 2 \\  \\  \leadsto   \sf( \sqrt{x} -  \frac{1}{ \sqrt{x} }{)}^{2} = 6 - 2 \\  \\ \leadsto  \sf\sqrt{ x}  -  \frac{1}{ \sqrt{x} }=  \sqrt{4} \\  \\  \pink{ \leadsto \sf \sqrt{x} -  \frac{1}{ \sqrt{x} } = \large 2  }

______________________

Similar questions