if x is an acute angle such that tanx + cotx = 2 find
Answers
Answered by
13
Given : tan x + cot x = 2.
It can be written as:
⇒ tanx + (1/tanx) = 2
⇒ tan^2x + 1 = 2 tanx
⇒ tan^2x + 1 - 2tanx = 0
⇒ (tan x)^2 + (1)^2 - 2(tanx)(1) = 0
It is in the form of a^2 + b^2 - 2ab = (a - b)^2
⇒ (tanx - 1)^2 = 0
⇒ tan x = 1
⇒ tan x = tan 45
⇒ x = 45.
Now,
⇒ tan^6x + cot^6x
⇒ (tan x)^6 + (cot x)^6
⇒ 1 + 1
⇒ 2.
Therefore, tan^6x + cot^6x = 2.
Hope this helps!
Answered by
8
since, x is an acute angle ,x < 90°
tanx + cotx = 2
tan x + 1 / tan x = 2
tan^2 x + 1 = 2 tan x
tan^2 x + 1 - 2 tan x = 0
( tan x )^2 + ( 1 )^2 - 2 ( tan x ) ( 1 ) = 0
_______________________________
use identiy : a^2 + b^2 - 2ab = ( a - b )^2
_______________________________
( tan x - 1 )^2 = 0
tan x - 1 = 0
tan x = 1
x = 45°
therefore ,
tan^6 x + cot^6 x = tan^6 45° + cot^6 45°
= (1 )^6 + (1 )^6 =2
_______________________________
tanx + cotx = 2
tan x + 1 / tan x = 2
tan^2 x + 1 = 2 tan x
tan^2 x + 1 - 2 tan x = 0
( tan x )^2 + ( 1 )^2 - 2 ( tan x ) ( 1 ) = 0
_______________________________
use identiy : a^2 + b^2 - 2ab = ( a - b )^2
_______________________________
( tan x - 1 )^2 = 0
tan x - 1 = 0
tan x = 1
x = 45°
therefore ,
tan^6 x + cot^6 x = tan^6 45° + cot^6 45°
= (1 )^6 + (1 )^6 =2
_______________________________
Similar questions