Math, asked by prince6895, 1 year ago

if X square + 1 by x square is equal to 7 then find the value of x cube + 1 by x cube and x minus one upon x

Answers

Answered by MaheswariS
12

\underline{\textsf{Given:}}

\mathsf{x^2+\dfrac{1}{x^2}=7}

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{x^3+\dfrac{1}{x^3}}\;\textsf{and}

\mathsf{x-\dfrac{1}{x}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{x^2+\dfrac{1}{x^2}=7}

\textsf{This can be writtten as}

\mathsf{x^2+\dfrac{1}{x^2}+2\,x(\dfrac{1}{x})=7+2}

\mathsf{(x+\frac{1}{x})^2=9}

\implies\mathsf{x+\frac{1}{x}=3}

\textsf{Using the identity,}

\mathsf{a^3+b^3=(a+b)^3-3ab(a+b)}

\mathsf{x^3+\dfrac{1}{x^3}=(x+\frac{1}{x})^3-3(x)(\frac{1}{x})(x+\frac{1}{x})}

\mathsf{x^3+\dfrac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})}

\mathsf{x^3+\dfrac{1}{x^3}=(3)^3-3(3)}

\mathsf{x^3+\dfrac{1}{x^3}=27-9}

\implies\boxed{\mathsf{x^3+\dfrac{1}{x^3}=18}}

\textsf{We know that}

\mathsf{(a-b)^2=(a+b)^2-4ab}

\implies\mathsf{(x-\dfrac{1}{x})^2=(x+\dfrac{1}{x})^2-4(x)(\dfrac{1}{x})}

\implies\mathsf{(x-\dfrac{1}{x})^2=(x+\dfrac{1}{x})^2-4}

\implies\mathsf{(x-\dfrac{1}{x})^2=(3)^2-4}

\implies\mathsf{(x-\dfrac{1}{x})^2=9-4}

\implies\mathsf{(x-\dfrac{1}{x})^2=5}

\implies\boxed{\mathsf{x-\dfrac{1}{x}=\sqrt{5}}}

Similar questions