if X2+1/X2 =27 find X+1/X and x-1/X
Answers
Step-by-step explanation:
Brainly.in
What is your question?
Secondary School Math 8 points
If x 2 +1/x 2 =27, find x-1/x.
Ask for details Follow Report by Gup4ta6chhchetaprinh 30.08.2016
Answers
vsks2403
vsks2403 Ambitious
x^{2} + \frac{1}{ x^{2} } = 27 x^{2} + \frac{1}{ x^{2} } + 2 (x) ( \frac{1}{x}) - 2 (x)( \frac{1}{x} ) = 27 x^{2} + ( \frac{1}{ x^{2} } + 2 ( x - \frac{1}{x} = 27 (x - 1/ x )^{2} = 27 -2 ( x - 1/x)^{2} + \sqrt{25} x - 1/x = + or - 5
4.2
164 votes
THANKS
235
Comments (1) Report
vsks2403
ans is + or - 5
Log in to add a comment
mindfulmaisel Ace
The value of \bold{x-\frac{1}{x} \text { is } 5}.
To find:
Find x-\frac{1}{x}
Solution:
Given: x^{2}+\frac{1}{x^{2}}=27
We know that (a-b)^{2}=a^{2}+b^{2}-2 a b
Putting a=x, b=\frac{1}{x}
\left(x-\frac{1}{x}\right)^{2}
=x^{2}+\frac{1}{x^{2}}-2 \times x \times \frac{1}{x}
=x^{2}+\frac{1}{x^{2}}-2
=27-2\ (Given\ that\ x^{2}+\frac{1}{x^{2}}=27)
=25
Hence, \left(x-\frac{1}{x}\right)^{2}=25
\left(x-\frac{1}{x}\right)^{2}=(5)^{2}
Taking square root of both sides, we get