In A.P a3=15,S10=125 then find d and a10
Answers
Answered by
4
Answer:
Given:
a3=15
a+(3-1)d=15
a+2d=15_(1)
S10=10/2(2a+(10-1)d)
125=5(2a+9d)
125=10a+45d_(2)
solving eq -1 and eq- 2
S10×1;10a+45d=125
a3×10;10a+20d=20
25d=105
d=105/25
{d=21/5}
substitute d value in eq- (1)
a+2(21/5)=15
a+42/5=15
5a+42=75
5a=75-42
{a=33/5}
a10=a+(10-1)d
a(10)=33/5+9(21/5)
a10=33/5+189/5
{a10=222/5}
Answered by
0
Answer: d=-1, a10=8
Step-by-step explanation:
An = a+(n-1)d
Sn=n/2[2a+(n-1)d]
A3=a+(3-1)d
15=a+2d (1)
S10=10/2[2a+(10-1)d]
125=5[2a+9d]
25=2a+9d (2)
Multiple equation(1)*2times
(15=a+2d)2
30=2a+4d (3)
Eq3- Eq2
2a+4d=30
2a+9d=25
Answer=-5d=5
d=-1
Substitute "d" in eq (2)
25=2a+9(-1)
25=2a-9
34=2a
a=17
Answer a10=17+(10-1)(-1)
=17-9
=8
Answers d=-1, a10=8
Similar questions