Math, asked by sunenaSB, 1 year ago

In a triangle abc right angle at c .If tan A 1/√3 find the value of sin A× cos B + cos A × sin B .

Answers

Answered by Koushikshiva
26
Answer is 1. View the solution
Attachments:
Answered by ranikashyab066
4

sin A × cos B + cos A × sin B  = 1

Step-by-step explanation:

Given:

Δ ABC is a Right Triangle at ∠C = 90°

\tan A=\dfrac{1}{\sqrt{3}}

To Find:

sin A × cos B + cos A × sin B = ?

Solution:

Δ ABC is a Right Triangle at ∠C = 90° .......Given

\tan A=\dfrac{1}{\sqrt{3}}

Also

\tan 30=\dfrac{1}{\sqrt{3}}

Therefore,

∠ A = 30°

Now in ΔABC

\angle A + \angle B + \angle C = 180\° .........angle sum Triangle property

substituting the values we get

\angle B=180-90-30=60\°

\angle B=60\°

So the value of

sin A × cos B + cos A × sin B  = \sin 30\times \cos 60 +\cos 30\times \sin 60 \\=\dfrac{1}{2}\times \dfrac{1}{2}+ \dfrac{\sqrt{3} }{2}\times \dfrac{\sqrt{3} }{2} \\=\dfrac{1}{4}+\dfrac{3}{4}\\=\dfrac{4}{4}\\=1

Therefore

sin A × cos B + cos A × sin B  = 1

Similar questions