Physics, asked by rahulkumar12333, 3 months ago

in a two digit number, the ten's digit is three times the unit's digit, when the numbee is decreased by 54, the digits are reversed. find the number.​

Answers

Answered by brainlyofficial11
5

Answer :-

Let the digit of unit's place be x

and digit of ten's place be y

then,

  • x = 2y ......(i)

and number = 10y + x

now, number obtained by reversing the digits = 10x + y

and it is given that the digits interchange their places of 27 is added to the number.

➪ number + 27 = new number

 \bold{: \implies 10y + x + 27 = 10x + y } \:  \:  \:   \\  \\  \bold{: \implies 10y - y + x - 10x =  - 27 } \\  \\  \bold{: \implies 9y - 9x =  - 27 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \\   \bold{:  \implies \cancel9(y - x) =  \cancel9( - 3)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies y - x =  - 3 } .........(ii)\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, put x = 2y in eq.(ii) from (i)

 \bold{: \implies y - 2y=  - 3 } \\  \\  \bold{:  \implies  \cancel - y = \cancel- 3} \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies y = 3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, substitute the value of y in eq.(i)

 \bold{: \implies x = 2 \times 3} \\  \\   \bold{:  \implies x = 6 } \:  \:  \:  \:  \:  \:  \:  \:

so, digit of unit's place is 6 and digit of ten's place is 3

then, the number is

  • 10 × 3 + 6 = 36

hence, the number is 36

Similar questions