In ΔABC, if a : b : c = 7 : 8: 9, then find cos A : cos B : cos C.
Answers
Answered by
0
Answer:
Cos A : Cos B : Cos C = 14 : 11 : 6
Step-by-step explanation:
a : b : c = 7 : 8 : 9
Cosine Formula:
a² = b² + c² - 2bcCos (A)
Find cos(A):
a² = b² + c² - 2bcCos (A)
Cos A = (b² + c² - a²)/2bc
Cos A = (8² + 9² - 7²)/2(8)(9)
Cos A = 96/144 = 2/3
FInd Cos (B):
b² = a² + c² - 2acCos (B)
Cos B = (a² + c² - b²)/2ac
Cos B = (7² + 9² - 8²)/2(7)(9)
Cos B = 66/126 = 11/21
FInd Cos (C):
c² = a² + b² - 2abCos (C)
Cos C = (a² + b² - c²)/2ab
Cos C = (7² + 8² - 9²)/2(7)(8)
Cos C = 32/112 = 2/7
Find the ratio:
Cos A = 2/3 = 14/21
Cos B = 11/21
Cos C = 2/7 = 6/21
Cos A : Cos B : Cos C = 14/21 : 11/21 : 6/21
Multiply by 21:
Cos A : Cos B : Cos C = 14 : 11 : 6
Answer: Cos A : Cos B : Cos C = 14 : 11 : 6
Similar questions
Math,
6 months ago
English,
6 months ago
India Languages,
6 months ago
Math,
1 year ago
Physics,
1 year ago