Math, asked by deepakchaudhry5262, 1 year ago

In ΔABC, prove that \frac{a\ sin(B - C)}{b^{2} - c^{2}}\ =\ \frac{b\ sin(C - A)}{c^{2} - a^{2}}\ =\ \frac{c\ sin(A - B)}{a^{2} - b^{2}} .

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:

Formula used:

In triangle ABC,


1.A+B+C=180

2.(a/SinA)=(b/sinB)=(c/sinC)=2R

3.{sin}^2A-{sin}^2B=sin(A+B).sin(A-B)


\frac{a.sin(B-C)}{{b}^2-{c}2}

=\frac{a.sin(B-C)}{{(2R.sinB)}^2-{(2R.sinC)}^2}

=\frac{a.sin(B-C)}{{4R}^2(sin^2B-{sin^2C})}

=\frac{2R.sinA.sin(B-C)}{{4R}^2(sin^2B-sin^2C)}

=\frac{sinA.sin(B-C)}{2R(sin^2B-sin^2C)}

=\frac{sinA.sin(B-C)}{2R.sin(B+C).sin(B-C)}

=\frac{sinA}{2R.sin(180-A)}

=\frac{sinA}{2R.sinA}\\\\=\frac{1}{2R}\\

\\\frac{a.sin(B-C)}{{b}^2-{c}^2}=\frac{1}{2R}

similarly we can prove

\frac{b.sin(C-A)}{{c}^2-{a}2}=\frac{1}{2R}\\

\frac{c.sin(A-B)}{{a}^2-{b}^2}=\frac{1}{2R}</p><br /><p>Hence\\\frac{a.sin(B-C)}{{b}^2-{c}2}=\frac{b.sin(C-A)}{{c}^2-{a}2}=\frac{c.sin(A-B)}{{a}^2-{b}2}



Similar questions