Math, asked by maahira17, 1 year ago

In the given figure, ∠B < 90° and segment AD ⊥ BC, show that
(i) b² = h² + a² + x² -2ax
(ii) b² = a² +c² - 2ax

Attachments:

Answers

Answered by nikitasingh79
53

SOLUTION :  

(i) In ∆ADC,  

AC² = AD² + DC²

[By using pythagoras theorem]

b² = h² + (a -x)²

b² = h² + a² + x² -2ax

[(a-b)² = a² + b² -2ab]

(ii) In ∆ ADB,

AB² = BD² + AD²

[By using pythagoras theorem]

c² = x² + h² ….. . (1)

b² = h² + a² + x² -2ax

[From part (i)]

b² = a² + (h² + x²) -2ax

b² = a² + c² -2ax

[From eq 1]

HOPE THIS ANSWER WILL HELP YOU...


Answered by Anonymous
22
(i)In ∆ADC, using Pythagoras theorem

 {AC}^{2} = {AD}^{2} + {CD}^{2} \\ {b}^{2} = {h}^{2} + {(a - x)}^{2} \\\boxed{\bold{ {b}^{2} = {h}^{2} + {a}^{2} + {x }^{2} - 2ax}} \: \: .............(1)

(ii)In ∆ADB, using Pythagoras theorem
 {AB}^{2} = {BD}^{2} + {AD}^{2} \\ {c}^{2} = {x}^{2} + {h}^{2} ............(2)
from eq (1) and (2)
\boxed{\bold{{b}^{2} = {a}^{2} + {c}^{2} - 2ax}}
Similar questions