Integral (1+cosecx)*1/2
Answers
Answered by
1
Answer:
2 sin^-1( sqrt( sin x)) + C
Step-by-step explanation:
∫ sqrt( 1+ csc x) dx = ∫ sqrt( 1+ 1/sin x) dx
= ∫ sqrt( sin x+ 1) / sqrt(sin x) dx
Let t= sqrt(sin x)
t^2 = sin x
2t dt = cos x dx
dx = 2 t dt / cos x
dx = 2 t dt / sqrt( 1-sin^2 x)
dx = 2t dt / sqrt( 1-t^4)
∫ sqrt( sin x+ 1) / sqrt(sin x) dx =2 ∫ sqrt( t^2+1) t dt / (sqrt(1-t^4) sqrt(t^2) )
=2 ∫ sqrt( t^2+1) dt / sqrt(1-t^4)
=2 ∫ sqrt( t^2+1) dt / sqrt [(1-t^2)(1+t^2)]
= 2 ∫ sqrt( t^2+1) dt / sqrt (1-t^2) sqrt (1+t^2)
= 2 ∫ dt / sqrt(1-t^2)
= 2 sin^-1( t)
replace t by sqrt(sin x)
= 2 sin^-1( sqrt( sin x)) + C
Similar questions