Math, asked by Santa123A, 1 year ago

Integrate 1/(1+x^4)^1/4 w. r. t x

Answers

Answered by Pitymys
0

We have to evaluate the integral  \int \frac{dx}{(1+x^4)^{1/4}}  .

First make the substitution  x^2=\tan \theta .

 \sin \theta =\frac{x^2}{\sqrt{1+x^4}}

Then,

 2xdx=\sec^2 \theta d\theta\\<br />dx=\frac{\sec^2 \theta d\theta}{2\sqrt{\tan \theta}}

Under this substitution the integral becomes,

 \int \frac{dx}{(1+x^4)^{1/4}}  =\int \frac{1}{(1+\tan^2 \theta)^{1/4}}  \frac{\sec^2 \theta d\theta}{2\sqrt{\tan \theta}} \\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\int \frac{1}{\sqrt{\sec \theta}}  \frac{\sec^2 \theta d\theta}{2\sqrt{\tan \theta}}  \\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\int  \frac{\sec \theta d\theta}{2\sqrt{\sin \theta}} \\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\int  \frac{ \cos \theta d\theta}{2\cos^2 \theta \sqrt{\sin \theta}}

 \int \frac{dx}{(1+x^4)^{1/4}}  =\int  \frac{ \cos \theta d\theta}{2(1-\sin^2 \theta) \sqrt{\sin \theta}}

Make the substitution,  \sin \theta =t^2\\<br />\sin \theta d \theta=2tdt

 \int \frac{dx}{(1+x^4)^{1/4}}  =\int  \frac{ 2tdt}{2(1-t^4)t}\\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\int  \frac{ dt}{2(1-t^4)}\\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\frac{1}{2}\int (\frac{1}{1+t^2}+\frac{1}{1-t^2})  dt\\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\frac{1}{2}\int \frac{1}{1+t^2} dt+\int \frac{1}{2}\frac{1}{1-t^2} dt\\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\frac{1}{2}\tan ^{-1} (t)+\frac{1}{4}\ln |\frac{1+t}{1-t}| +C

Note that t= \sqrt{\sin \theta}=\frac{x}{(1+x^4)^{1/4}}

Back substituting,

 \int \frac{dx}{(1+x^4)^{1/4}}  =\frac{1}{2}\tan ^{-1} (\frac{x}{(1+x^4)^{1/4}} )+\frac{1}{4}\ln |\frac{1+\frac{x}{(1+x^4)^{1/4}} }{1-\frac{x}{(1+x^4)^{1/4}} }| +C  \\<br />\int \frac{dx}{(1+x^4)^{1/4}}  =\frac{1}{2}\tan ^{-1} (\frac{x}{(1+x^4)^{1/4}} )+\frac{1}{4}\ln |\frac{(1+x^4)^{1/4}+x }{(1+x^4)^{1/4}-x}| +C

Similar questions